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1.  Introduction
The notion of reference frame is one of the main 
causes why students have difficulties interpret-
ing motions in astronomy. This is not com-
pletely surprising, since the change of frame of 
reference involves abstract reasoning, which is 
usually not completely developed in all popu-
lations, especially young students [1]. Indeed, 

several examples of misconceptions were identi-
fied among students in many contents of physics 
and astronomy that require formal thinking [2, 3].

Looking back to the history of physics, the 
meticulous observations of nature by Aristotle 
(384–322 BC) lead him to a philosophical 
description of the universe. This was based on a 
simple, logic and very appealing common sense 
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Abstract
The motion of astronomical bodies and the centre of mass of the system is 
not always well perceived by students. One of the struggles is the conceptual 
change of reference frame, which is the same that held back the acceptance of 
the Heliocentric model over the Geocentric one. To address the question, the 
notion of centre of mass, motion equations (and their numerical solution for 
a system of multiple bodies), and change of frame of reference is introduced. 
The discussion is done based on conceptual and real world examples, using 
the solar system. Consequently, through the use of simple ‘do it yourself’ 
methods and basic equations, students can debate complex motions, and have 
a wider and potentially effective understanding of physics.
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language. For Aristotle, the Earth was the centre 
of the universe; the Earth was the only reference 
frame he knew. Such geocentric description was 
lately improved by Ptolemy (c. 100–c. 170), in 
his work Almagest [4–7], where the motions of 
the planets, Moon and Sun around the Earth, were 
presented as a physical model supported by math-
ematical descriptions of the orbits.

The geocentric model had several advantages 
at that time: i. it did not contradict Aristotle’s 
descriptions, ii. it was supported by the religious 
ideals of the middle age in Europe, and iii. it was 
based on a local frame of reference (the Earth) 
and followed a concrete reasoning. That is why it 
prevailed for about 14 centuries.

When Copernicus (1473–1543) took the 
(previously) rejected ideas of Aristarchus of 
Samos (c. 310–c. 230 BC) and proposed the 
Heliocentric model, he and his followers quickly 
realised they had two major issues to overcome: 
a huge and visible religious dispute, and a not-
so-visible but still important cognitive barrier. 
The cognitive barrier arose because it was nec-
essary to put oneself outside the Earth to fully 
understand the observations taken from it. It 
was this combination of factors that maintained 
the debate of geocentric and heliocentric-based 
models up to the moment when humankind sent 
satellites out of the Earth in the 20th century.

Nowadays, students still remain confused 
whenever changes of frame of reference are needed 
to understand astronomical phenomena, such as 
moon phases, seasons, eclipses, or the motion of 
planets around a common centre of mass (CM).

Some simple but potentially effective ideas 
concerning the topic of frame of reference were 
developed during the 11th Summer School of 
Physics at the University of Porto for high sec-
ondary level students, and are presented here. The 
concepts addressed are: CM of a system, trajec-
tory of the bodies in the CM reference frame, and 
absolute trajectory of the same bodies. In this 
approach, some computing is used to simulate 
the trajectories of the bodies, and to discuss the 
implications of the initial conditions (mass and 
speed) on the description of the phenomena.

2.  Theory and computational method
Before diving into the subject of change of the 
reference frame, it is important to introduce the 

theory needed for solving the problems numer
ically [8].

Consider a system composed by a number 
of distinct bodies, randomly distributed, orbiting 
each other. For this setup, it is useful to define 
the location of the CM of the system. The bod-
ies’ motion due to gravity forces can be computed 
with respect to a system centered on the CM, or to 
an inertial reference system.

2.1.  Centre of mass of a system

The CM of a multiple bodies system can be 
defined as the unique point, within the system, 
which can be used to describe the system’s 
response to external forces.

The mass of the CM (mCM) is the sum (∑) of 
the mass of all N bodies, each with mass mi,

∑≡
=

m m .
i

N

iCM
1
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The position (→rCM) and velocity (→vCM) of the 
CM are related to each body location (→ri) and 
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2.2.  Motion equations

To calculate the motion of the bodies in the sys-
tem, Newton’s second law has to be used,

=
→ →F ma,� (4)

that relates the forces acting on a body (
→
F) and its 

acceleration (→a).
Admitting two bodies (of mass m1 and m2) 

in free space, the gravitational force acting on  
body 1 is

=
→

�F G
m m

r
r ,1

1 2
2� (5)

where �r  is the unit vector that points from body 
1 to body 2, and G is the gravitational constant. 
Using the notion of unit vector in equation (5), the 
result is
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The acceleration of body 1 can thus be obtain 
from both equations (4) and (6),

=→ →a G
m

r
r .1

2
3� (7)

The same can be applied to body 2, just chang-
ing m2 to m1 and inverting the direction of →r  in 
equation (7).

2.2.1.  Numerical solution.  There are many methods 
to solve equation (7). Here a numerical one is used 
because a general solution for a system of multiple 
bodies is searched, and there is no analytical solution.

The simplest numerical method is the Euler one 
(and can even be applied with a spreadsheet editor 
[9]). It states that for a general function f(t), it is pos-
sible to compute its value at an instant { }+t n 1 , with an 
initial value { }f n  (at instant { }t n ), using the relation
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where ( / ){ }f td d n  is the function derivative at 
instant { }t n , and { } { }∆ = −+t t tn n1 .

Applying this method to a multiple bodies 
system, and knowing that / =→ →v t ad d , the velocity 
of a body can be estimated (according to equa-
tion (8)) by
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where from equation  (7), the acceleration for 
body i, subject to the gravity of the others, is
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where →rij is the vector pointing from body i to 
body j. Applying the same scheme to the position 
( / =→ →r t vd d ), it yields

{ } { } { }= +∆+→ → →r r tv .i
n

i
n

i
n1� (11)

The Euler method is considered a first-order 
numerical method, where the global error is 
proportional to the step size (∆t). As the exam-
ples later discussed involve astronomical bodies 
(where the steps used can be of the order of days), 
an adjustment to the above formulae can be made 
for greater accuracy. One simple adjustment is to 
compute the position with a second order deriva-
tive, using the following equation,

( ){ } { } { } { }= + ∆ + ∆+→ → → →r r v t a t
1

2
.i

n
i

n
i

n
i

n1 2� (12)

The above sequence of equations  (9), (10) 
and (12) is repeated successively, until a pre-
determined final instant is reached. A way to ver-
ify how much error is introduced by the numerical 
solution, is to calculate the variation in the total 
mechanical energy [10].

2.3.  Frames of reference

All previous equations  describe the motion in 
an inertial reference system. This frame does 
not have translational or rotational acceleration, 
relative to the ‘fixed stars’ [11]. The Heliocentric 
frame is an example of an inertial frame of refer-
ence for the Earth–Moon system, where the Sun 
is at the origin of the reference frame.

Sometimes, the motion of the bodies can be 
simplified when described at the CM reference 
system (where the origin is at the CM). In this 
case, it is necessary to impose mathematically 
that →vCM is zero, as well as →rCM. This implies that 
the velocities and position of the bodies in the 
CM reference frame, respectively ′→vi  and ′→r i , are 
related to the absolute ones by,

= −′→ → →v v v ,i i CM� (13)

= −′→ → →r r r .i i CM� (14)

This change of reference frame is a simple 
translation of the inertial reference frame, and can 
be applied to any general point by replacing →vCM 
and →rCM by the respective velocity and position of 
that point. No rotation is introduced here.

3.  Examples
With the equations presented in the previous sec-
tion, several multiple bodies systems can be solved. 
Some examples, explored with students at the 11th 
Summer School of Physics, are presented here.

The first one is a generic two bodies system 
(which can be two stars or two planets). The next 
ones correspond to real examples in the solar sys-
tem, which include the Sun, and the planets Earth, 
Moon, Mars and Jupiter. To deal with real exam-
ples, the Jet Propulsion Laboratory HORIZON 
Ephemerides, corresponding to 11 April 2016, 
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were used to extract the bodies’ real position and 
velocity [12].

3.1.  Example 1—two bodies general system

The CM of a two bodies system is always lying 
between them, closer to the more massive body, 
or in the middle if they have the same mass. 
Admitting one of the bodies has an initial veloc-
ity (table 1), students easily understand that both 
will start moving around each other, due to the 
gravitational interaction between them. The tra-
jectory of the bodies can be computed with a sim-
ple spreadsheet editor, as can be consulted in the 
supplementary material4.

It is therefore not surprising that students con-
clude that both bodies describe, in the CM refer-
ence system, closed elliptical trajectories around 
a common point, the CM (figure 1). However, as 
the bodies’ motion influence the velocity of the 
CM, the result in the inertial frame of reference is 
a helical-like motion of the lower massive body, 
while the more massive one experiences a compo-
sition of translation in space and rotation around 
the CM (figure 2).

Such weird trajectories are counter-intuitive 
and provide a good first discussion about why we 
observe unlike trajectories in different reference 
systems.

3.2.  Example 2—Earth–Moon system

The Earth–Moon system has some similarities 
to the previous example, but now the Earth is 
about ten times more massive (the Moon’s mass 
is 1.23% of the Earth). Therefore, the CM of this 
system is much closer to the Earth.

In the CM reference frame, the Moon 
describes an elliptical motion, whereas the Earth 
does not seem to move (figure 3(a)). However, 
a closer observation of the Earth reveals that in 

fact it moves, but the CM of the system is always 
located inside the planet (figure 3(b)).

Because the CM lies inside the Earth, the first 
astronomers had the perception that the Moon 
orbited the Earth and not a common point (the 
CM)! That only happened because their astro-
nomical observations were taken from the Earth 
local reference frame!

3.3.  Example 3—Sun–Earth–Moon system

Moving from the Earth–Moon system to the 
more general Sun–Earth–Moon system, we have 
to consider that the Earth, in fact, orbits around 

Table 1.  Two bodies system initial conditions.

Body
Mass 
(×1022 kg)

Position (x, y)  
(×103 km)

Velocity  
(vx, vy)  
(km s−1)

1 59.72 (0, 0) (0, 0)
2 7.346 (357.0, 0) (0, 0.2500)

Figure 1.  Two bodies system motions on the CM 
reference frame. Data was computed for a time interval 
of 90 d (only 43 d are shown here).

Figure 2.  Two bodies system motions on an inertial 
reference frame. Data was computed for a time interval 
of 90 d.

4  Excel numeric solution available at stacks.iop.org/
PhysED/51/055012/mmedia.

http://stacks.iop.org/PhysED/51/055012/mmedia
http://stacks.iop.org/PhysED/51/055012/mmedia
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the Sun and therefore has already a velocity in 
space.

At this stage, students are already aware that 
the most massive body (the Sun) is affected by the 
gravitational forces of the other two (Earth and 
Moon). Thus, taking into account the previous 
example, they can predict that the centre of the 
Sun experiences some motion on the inertial ref-
erence system, which means that the solar system 
as a whole moves in space! What they really may 
find surprising is that this motion is very small 
when compared to the Sun dimension (which has 
about 99.8% of the total solar system mass), and 
this is why we state that the planets orbit only 
around the Sun in the solar system.

The relative motions of the Earth and Moon 
can also be observed from the CM of this system 
of bodies. Figure 4 shows a zoom of the trajec-
tories of these bodies while they orbit the Sun. 
Students can see that the Moon’s trajectory is a 
composition of its orbit around the Earth, and 
the Earth around the Sun. Therefore, the Moon 
intersects the trajectory of the Earth each time it 
completes an orbital revolution, resulting in an 
oscillating motion around the Earth trajectory.

The final stage of this topic is to let students 
understand why the (apparent) retrograde motion 
is seen from the Earth. For this purpose, a more 
complex system must be projected.

3.4.  Example 4—more complex systems

The principles for the mechanics of a more com-
plex system do not differ from those in the previ-
ous examples.

The example considered here is the motions 
of the Earth, Mars and Jupiter around the Sun. 
The resulting trajectories of these bodies on an 
inertial reference frame can be seen in figure 5.

Even though they influence each other, through 
gravitational forces, the planets follow almost 
circular orbits around the Sun, as was expected. 
However, this is only true when seen from an iner-
tial reference frame, or the Sun since his motion 
is negligible when compared to the planets’ ones.

Figure 3.  The Earth–Moon system motion. In (a) the 
Earth graphically overlaps the CM. Data was computed 
for a time interval of 90 d (only 27 d are shown here). 
(a) Earth and Moon seen from the CM. (b) The CM 
seen from Earth.

Figure 4.  A close-up of the Earth–Moon system, 
orbiting the Sun, seen from an inertial reference frame. 
Data was computed for a time interval of 400 d (only a 
few days are shown here).
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To evaluate the (apparent) motion of those 
planets as seen from a local reference frame (the 
Earth), students only need to apply equations (13) 
and (14), replacing →vCM and →rCM by →vEarth and →rEarth, 
respectively, to obtain the velocity and position in 
the Earth reference frame.

Plots for the case of Sun–Earth–Mars and 
Sun–Earth–Jupiter systems are given in figures 6 
and 7, respectively.

The loops observed on Mars and Jupiter 
trajectories correspond to apparent retrograde 
motions. In ancient times these loops lead Ptolemy 
to formulate the epicycle theory for the Geocentric 
model, as an attempt to explain the phenomena 
observed for the five known planets at that time: 
Mercury, Venus, Mars, Jupiter and Saturn. Instead 
of making the Geocentric model more accepted, 
the complexity of such theory weakened it.

Students can thus realise that the Heliocentric 
model proposed by Copernicus offers a simpler 
explanation of the planets’ motion, clearly reveal-
ing why the retrograde motions are observed from 
the Earth.

To obtain all these plots an educational 
program5 was developed (for a x64 Windows 
operating system), based on MATLAB soft-
ware. This program allows to see step by step 
the bodies’ motions, which makes it easier 
and more engaging for students to understand, 
especially when they observe Mars and Jupiter 
making retrograde motions, as seen from the 
Earth.

4.  Conclusion
Students usually give very little importance to 
the meaning of the centre of mass of a system, 

Figure 5.  The motion of the Sun–Earth–Mars–Jupiter 
system, as seen from an inertial reference frame. In this 
image the Sun graphically overlaps the CM. Data was 
computed for a time interval of 4333 d.

Figure 6.  The motion of the Sun–Earth–Mars 
system, as seen from the Earth. In this image the Sun 
graphically overlaps the CM. Data was computed 
for a time interval of 2748 d (only 1776 d are shown 
here).

Figure 7.  The motion of the Sun–Earth–Jupiter 
system, as seen from the Earth. In this image the Sun 
graphically overlaps the CM. Data was computed for a 
time interval of 4333 d.

5  See supplementary material; orbital motions, available at 
stacks.iop.org/PhysED/51/055012/mmedia.

http://stacks.iop.org/PhysED/51/055012/mmedia
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because they tend to confine it to the particle 
model problems. The approach described in the 
context of astronomy gives a new and wider per-
spective of understanding the role of the CM in 
the dynamics of a system of bodies. In particular, 
it promotes students’ reasoning about how the 
trajectories of bodies can be seen in different ref-
erence frames, which is essential to understand 
natural phenomena such as the Coriolis effect or 
the Earth tides.

This approach also allows students to realise 
that apparently complex motions can be explained 
with basic and simple laws. In fact, the most inter-
esting about this approach is that students, with 
very simple mathematics but significant physics 
reasoning, can obtain these results by themselves, 
only considering gravitational interactions and no 
pre-established formulas.

The use of a simple spreadsheet where a 
convenient, but accessible, manipulation of equa-
tions can be made to solve the problems numer
ically, is a very engaging strategy that involves 
actively students in team-based learning and 
results in an effective understanding of physics.
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